# ПATIBIA UПIVERSITY <br> OF SCIEПCE AПD TECHПOLOGY <br> FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES 

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

| QUALIFICATION: BACHELOR OF SCIENCE |  |
| :--- | :--- |
| QUALIFICATION CODE: 07BOSC | LEVEL: 6 |
| COURSE CODE: ICH602S | COURSE NAME: INORGANIC CHEMISTRY |
| SESSION: JANUARY 2023 | PAPER: THEORY |
| DURATION: 3 HOURS | MARKS: 100 |


| SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER |  |
| :--- | :--- |
| EXAMINER(S) | DR. EUODIA HESS |
| MODERATOR: | PROF HABAUKA KWAAMBWA |


| INSTRUCTIONS |
| :--- |
| 1. Answer ALL the questions. |
| 2. Write clearly and neatly. |
| 3. Number the answers clearly |
| 4. All written work must be done in blue or black ink and sketches can |
| be done in pencil |
| 5. No books, notes and other additional aids are allowed |

PERMISSABLE MATERIALS
Non-programmable calculators

## ATTACHMENTS

1. List of useful constants
2. Periodic Table

THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page, list of useful constants and Periodic Table)

- There are 20 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. What are oxidation states of metal ion in following complexes?
A. $\mathrm{PdCl}_{2}$
B. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$
C. $\mathrm{Pd}(\mathrm{OAC})_{2}$
D. ArPdBr where Ar is aryl
2. Which of the following complex has a highest oxidation state of metal?
A. $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Cr}$
B. $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{C}$
C. $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$
D. $\mathrm{K}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$
3. What is the oxidation state of molybdenum in $\left[\eta^{7} \text {-tropylium) } \mathrm{Mo}(\mathrm{CO})_{3}\right]^{+}$?
A. +2
B. +1
C. 0
D. -1
4. Which of the following is the neutral complex which follows the 18 - electron rule?
A. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}$
B. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) 2 \mathrm{Mo}(\mathrm{CO})$
C. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Co}$
D. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) 2 \operatorname{Re}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)$
5. As pure molecular solids, which of the following exhibits dipole-dipole intermolecular forces: $\mathrm{HBr}, \mathrm{NBr}_{3}, \mathrm{SBr}_{2}$, and $\mathrm{CBr}_{4}$ ?
A. HBr only
B. $\mathrm{CBr}_{4}$ and $\mathrm{NBr}_{3}$
C. HBr and $\mathrm{SBr}_{2}$
D. $\mathrm{HBr}, \mathrm{NBr}_{3}$, and $\mathrm{SBr}_{2}$
6. Which of the following molecules is expected to form hydrogen bonds in the pure liquid or solid phase: ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$, acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$, acetaldehyde $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$, and dimethyl ether $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$ ?
A. ethanol only
B. acetaldehyde only
C. ethanol and acetic acid
D. dimethyl ether and ethanol
7. When a water molecule forms a hydrogen bond with another water molecule, which atoms are involved in the interaction?
A. a hydrogen from one molecule and a hydrogen from the other molecule
B. an oxygen from one molecule and an oxygen from the other molecule
C. a hydrogen from one molecule and an oxygen from the other molecule
D. an oxygen and a hydrogen from the same molecule
8. Arrange $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$, and $\mathrm{H}_{2} \mathrm{Te}$ in order from lowest to highest boiling point.
A. $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}$
B. $\mathrm{HF}<\mathrm{HBr}<\mathrm{HCl}$
C. $\mathrm{HCl}<\mathrm{HBr}<\mathrm{HF}$
D. $\mathrm{HBr}<\mathrm{HF}<\mathrm{HCl}$
9. In any cubic lattice an atom lying at the face of a unit cell is shared equally by how many unit cells?
A. 2
B. 1
C. 4
D. 8
10. Arrange the three common unit cells in order from least dense to most dense packing.
A. primitive cubic < body-centered cubic < face-centered cubic
B. face-centered cubic < body-centered cubic < primitive cubic
C. primitive cubic < face-centered cubic < body-centered cubic
D. body-centered cubic < primitive cubic < face-centered cubic
11. If a metal crystallizes in a body-centered cubic lattice, each metal atom has $\qquad$ " nearest neighbors."
A. 8
B. 6
C. 4
D. 2
12. What is the distance, in atomic radii, along any edge of a body-centered cubic unit cell?
A. $(4 \times r) / \sqrt{3}$
B. $2 \times r$
C. $4 \times r$
D. $(2 \times r) / \sqrt{3}$
13. Nickel has a face-centered cubic cell, and its density is $8.90 \mathrm{~g} / \mathrm{cm}^{3}$. What is the radius (in pm) of a nickel atom?
A. 62.3 pm
B. 88.1 pm
C. 125 pm
D. 249 pm
14. Rhodium crystallizes in a face-centered cubic lattice with an edge length of 380.1 pm . What is the density of rhodium?
A. $0.777 \mathrm{~g} / \mathrm{cm}^{3}$
B. $3.11 \mathrm{~g} / \mathrm{cm}^{3}$
C. $12.4 \mathrm{~g} / \mathrm{cm}^{3}$
D. $6.22 \mathrm{~g} / \mathrm{cm}^{3}$
15. Iridium (atomic mass $192.2 \mathrm{~g} / \mathrm{mol}$ ), with an atomic radius of 135.5 pm , crystallizes in a face-centered cubic lattice. What is the density of iridium?
A. $1.41 \mathrm{~g} / \mathrm{cm}^{3}$
B. $2.83 \mathrm{~g} / \mathrm{cm}^{3}$
C. $5.66 \mathrm{~g} / \mathrm{cm}^{3}$
D. $11.3 \mathrm{~g} / \mathrm{cm}^{3}$
16. Iron crystallizes in the body-centered cubic system. If the edge of the unit cell is 290 pm , what is the radius of a iron atom in picometers?
A. 504 pm
B. 402 pm
C. 672 pm
D. 126 pm
17. Which of the following statements concerning valence bond (VB) theory is/are CORRECT?
A. VB theory can describe molecular bonding in excited states
B. VB theory assumes that electrons are localized between pairs of atoms
C. VB theory predicts localized lone pairs of electrons
D. A and B
18. How many sigma ( $\sigma$ ) bonds and pi $(\pi)$ bonds are in carbon monoxide?
A. three $\sigma$, zero $\pi$
B. two $\sigma$, one $\pi$
C. two $\sigma$, two $\pi$
D. one $\sigma$, two $\pi$
19. To form a molecule with a tetrahedral electron pair geometry, what set of pure atomic orbitals must be mixed?
A. one $s$ and two $p$
B. one $s$ and three $p$
C. two $s$ and one $p$
D. one $s$ and one $p$
20. What is the hybridization of the central nitrogen atom in $\mathrm{N}_{2} \mathrm{O}$ ?
A. $s p^{2}$
B. $s p^{3}$
C. $s p$
D. None of the above

## SECTION B:

There are THREE (3) questions in this section. Answer all Questions.
Show clearly, where necessary, how you arrive at the answer as the working will carry marks to.

## Question 1

1.1 Specify the oxidation number of the central metal atom in each of the following compounds:
a) $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{2}$
b) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{3}$
c) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
d) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
e) $\left[\mathrm{PtCl}_{6}\right]^{2-}$
1.2 What are the systematic names for the following ion and compounds?
a) $\left[\text { cis- } \mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$
b) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{3}$
c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
d) $\left[\mathrm{Cr}(\mathrm{en})_{3}\right] \mathrm{Cl}_{2}$
e) $\mathrm{NaAuF}_{4}$
1.3 Write the formulas for the following compounds:
a) bis(ethylenediamine)dichlorochromium(III)
b) pentacarbonyliron(0)
c) potassium tetracyanocuprate(II)
d) tetraammineaquachlorocobalt(III)chloride
e) sodium hexanitrocobaltate(III)

## Question 2

2.1 What kind of intermolecular/attractive forces must be overcome to in order to:
a) melt ice
b) boil molecular bromine
c) melt solid iodine
2.2 Calculate the number of spheres (atoms per unit cell) that would be found within a simple cubic, a body and a face-centered cubic cell? Assume the spheres are the same.
2.3 When silver crystallizes, it forms face-centered cubic cells. The unit cell edge length is 409 pm . Calculate the density of silver.
2.4 What are the different types of crystalline structures (crystals)?

## Question 3

3.1 Do $\left[1 \mathrm{rBr}_{2}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})(\mathrm{PPh} 3)\right]$ and $\left[\mathrm{Cr}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]$ obey 18 -electron rule? Show your working.
3.2 Give the formal names of ferrocene and $\left[\mathrm{RhMe}\left(\mathrm{PMe}_{3}\right)_{4}\right]$

## USEFUL CONSTANTS:

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar}^{2} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.08206 \mathrm{~L}$ atm $\mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$
$1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} \cdot \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr
Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$

Rydberg constant, $\mathrm{R}_{\mathrm{h}}=2.18 \times 10^{-18} \mathrm{~J}$

Speed of light, $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$

## PERIODIC TABLE OF THE ELEMENTS

| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 $\mathbf{H}$ 1.00794 | 2 |  |  |  |  |  |  |  |  |  |  | 13 | 14 | 15 | 16 | 17 | 2 <br> $\mathbf{H e}$ <br> 4.00260 |
| 3 | 4 |  |  |  |  |  |  |  |  |  |  | 5 | 6 | 7 | 8 | 9 | 10 |
| Li | Be |  |  |  |  |  |  |  |  |  |  | B | C | N | 0 | F | Ne |
| 6.941 | 9.01218 |  |  |  |  |  |  |  |  |  |  | 10.81 | 12.011 | 14.0067 | 15.9994 | 18.9984 | 20.179 |
| 11 | 12 |  |  |  |  |  |  |  |  |  |  | 13 | 14 | 15 | 16 | 17 | 18 |
| Na | Mg |  |  |  |  |  |  |  |  |  |  | Al | Si | P | S | Cl | Ar |
| 22.9898 | 24.305 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 26.9815 | 28.0855 | 30.9738 | 32.06 | 35.453 | 39.948 |
| 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | $\mathbf{K r}$ |
| 39.0983 | 40.08 | 44.9559 | 47.88 | 50.9415 | 51.996 | 54.9380 | 55.847 | 58.9332 | 58.69 | 63.546 | 65.38 | 69.72 | 72.59 | 74.9216 | 78.96 | 79.904 | 83.8 |
| 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |
| Rb | Sr | Y | $\mathbf{Z r}$ | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | $\mathbf{X e}$ |
| 85.4678 | 87.62 | 88.9059 | 91.22 | 92.9064 | 95.94 | (98) | 101.07 | 102.906 | 106.42 | 107.868 | 112.41 | 114.82 | 118.69 | 121.75 | 127.6 | 126.9 | 131.29 |
| 55 | 56 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 |
| Cs | Ba | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | $\mathbf{R n}$ |
| 132.905 | 137.33 | 174.967 | 178.49 | 180.948 | 183.85 | 186.207 | 190.2 | 192.22 | 195.08 | 196.967 | 200.59 | 204,383 | 207.2 | 208.908 | (209) | (210) | (222) |
| 87 | 88 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 |  | 114 |  | 116 |  | 118 |
| Fr | Ra | $\mathbf{L r}$ | Rf | Db | Sg | Bh | Hs | Mit | Uun | Uuu | Uub |  | Uuq |  | Uuh |  | Uuo |
| (223) | 226.025 | (260) | (261) | (262) | (263) | (264) | (265) | (268) |  |  |  |  |  |  |  |  |  |

Lanthanides:

| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | $\mathbf{Y b}$ |
| 138.906 | 140.12 | 140.908 | 144.24 | (145) | 150.36 | 151.96 | 157.25 | 158.925 | 162.50 | 161.930 | 167.26 | 166.934 | 173.04 |

Actinides:

| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ac | Th | Pa | U | Np | $\mathbf{P u}$ | Am | Cm | Bk | Cf | Es | Fm | Md | No |
| 227.028 | 232.038 | 231.036 | 238.029 | 237.048 | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) |

